
pygrappa

Jun 19, 2020

Contents

1 About 1

2 Usage 17

Python Module Index 23

Index 25

i

ii

CHAPTER 1

About

GRAPPA is a popular parallel imaging reconstruction algorithm. Unfortunately there aren’t a lot of easy to use Python
implementations of it or its many variants available, so I decided to release this simple package.

There are also a couple reference SENSE-like implementations that have made their way into the package. This is to
be expected – a lot of later parallel imaging algorithms have hints of both GRAPPA- and SENSE-like inspirations.

1.1 Installation

1.1.1 Installation

Windows 10 Installation

If you are using Windows, then, first of all: sorry. This is not ideal, but I understand that it might not be your fault. I
will assume you are trying to get pygrappa installed on Windows 10. I will further assume that you are using Python
3.7 64-bit build. We will need a C++ compiler to install pygrappa, so officially you should have “Microsoft Visual
C++ Build Tools” installed. I haven’t tried this, but it should work with VS build tools installed.

However, if you are not able to install the build tools, we can do it using the MinGW compiler instead. It’ll be a little
more involved than a simple pip install, but that’s what you get for choosing Windows.

Steps:

• Download 64-bit fork of MinGW from
https://sourceforge.net/projects/mingw-w64/

• Follow this guide:
https://github.com/orlp/dev-on-windows/wiki/Installing-GCC–&-MSYS2

• Now you should be able to use gcc/g++/etc. from CMD-line

• Modify cygwinccompiler.py similar to
https://github.com/tgalal/yowsup/issues/2494#issuecomment-388439162
but using the version number 1916:

1

https://sourceforge.net/projects/mingw-w64/
https://github.com/orlp/dev-on-windows/wiki/Installing-GCC--&-MSYS2
https://github.com/tgalal/yowsup/issues/2494#issuecomment-388439162

pygrappa

def get_msvcr():
"""Include the appropriate MSVC runtime library if Python
was built with MSVC 7.0 or later.
"""
msc_pos = sys.version.find('MSC v.')
if msc_pos != -1:

msc_ver = sys.version[msc_pos+6:msc_pos+10]
if msc_ver == '1300':

MSVC 7.0
return ['msvcr70']

elif msc_ver == '1310':
MSVC 7.1
return ['msvcr71']

elif msc_ver == '1400':
VS2005 / MSVC 8.0
return ['msvcr80']

elif msc_ver == '1500':
VS2008 / MSVC 9.0
return ['msvcr90']

elif msc_ver == '1600':
VS2010 / MSVC 10.0
return ['msvcr100']

elif msc_ver == '1916': # <- ADD THIS CONDITION
Visual Studio 2015 / Visual C++ 14.0
return ['vcruntime140']

else:
raise ValueError(

"Unknown MS Compiler version %s " % msc_ver)

• now run the command:

pip install --global-option build_ext --global-option \
--compiler=mingw32 --global-option -DMS_WIN64 pygrappa

Hopefully this works for you. Refer to https://github.com/mckib2/pygrappa/issues/17 for a more detailed discussion.

This package is developed in Ubuntu 18.04 using Python 3.6.8. That’s not to say it won’t work on other things.
You should submit an issue when it doesn’t work like it says it should. The whole idea was to have an easy to use,
pip-install-able GRAPPA module, so let’s try to do that.

In general, it’s a good idea to work inside virtual environments. I create and activate mine like this:

python3 -m venv /venvs/pygrappa
source /venvs/pygrappa/bin/activate

More information can be found in the venv documentation.

Installation under a Unix-based platform should then be as easy as:

pip install pygrappa

You will need a C/C++ compiler that supports the C++14 standard. See Windows 10 Installation for more info on
installing under Windows.

pip install pygrappa

There are C/C++ extensions to be compiled, so you will need a compiler that supports either the C++11 or C++14
standard. See Installation for more instructions.

2 Chapter 1. About

https://github.com/mckib2/pygrappa/issues/17
https://docs.python.org/3/library/venv.html

pygrappa

1.2 API Reference

Note: The upcoming 1.0.0 release will make changes to the API and simplify the interface considerably. The plans
are to collect all GRAPPA-like methods and SENSE-like methods in their own interfaces:

pygrappa.grappa(
kspace, calib=None, kernel_size=None,
method='grappa', coil_axis=-1, options=None)
pygrappa.sense(kspace, sens, coil_axis=-1, options)

The method parameter will allow the grappa interface to call the existing methods such as tgrappa, mdgrappa, etc.
under the hood. The dictionary options can be used to pass in method-specific parameters. The SENSE interface will
behave similarly.

The gridding interface is still an open question.

Progress on the 1.0.0 release can be found here

1.2.1 API Reference

pygrappa.grappa

Python GRAPPA implementation.

More efficient Python implementation of GRAPPA.

Notes

view_as_windows uses numpy.lib.stride_tricks.as_strided which may use up a lot of memory. This is more efficient
as we get all the patches in one go as opposed to looping over the image in multiple dimensions. These are stored in
temporary memmaps so we don’t crash anyone’s computer (from memory usage, at least. . .). Note that the recon is
always stored in a temporary file memmap to begin with, since its initial size is zero-padded. The final output array or
memmap is then initialized at the end with the correct size. This is because it’s hard to resize memmaps, it’s easier to
create a temporary one and then copy over the contents to the final one.

We are looping over unique sampling patterns, similar to Miki Lustig’s key-lookup table for kernels. It might be nice
to train multiple kernel geometries simultaneously if possible, or at least have an option to do chunks at a time.

Currently each hole in kspace is being looped over when applying weights for a single kernel type. It would be nice
to apply the weights for all corresponding holes simultaneously.

pygrappa.grappa.grappa(kspace, calib, kernel_size=(5, 5), coil_axis=-1, lamda=0.01,
memmap=False, memmap_filename=’out.memmap’, silent=True)

GeneRalized Autocalibrating Partially Parallel Acquisitions.

Parameters

• kspace (array_like) – 2D multi-coil k-space data to reconstruct from. Make sure that
the missing entries have exact zeros in them.

• calib (array_like) – Calibration data (fully sampled k-space).

• kernel_size (tuple, optional) – Size of the 2D GRAPPA kernel (kx, ky).

• coil_axis (int, optional) – Dimension holding coil data. The other two dimen-
sions should be image size: (sx, sy).

1.2. API Reference 3

https://github.com/mckib2/pygrappa/milestone/1

pygrappa

• lamda (float, optional) – Tikhonov regularization for the kernel calibration.

• memmap (bool, optional) – Store data in Numpy memmaps. Use when datasets are
too large to store in memory.

• memmap_filename (str, optional) – Name of memmap to store results in. File is
only saved if memmap=True.

• silent (bool, optional) – Suppress messages to user.

Returns res – k-space data where missing entries have been filled in.

Return type array_like

Notes

Based on implementation of the GRAPPA algorithm1 for 2D images.

If memmap=True, the results will be written to memmap_filename and nothing is returned from the function.

References

pygrappa.cgrappa

Used by autodoc_mock_imports.

cgrappa is Cython implementation of GRAPPA. It is faster than its Python counterparts, but is known to have bugs. It
is probably due for a rewrite in the style of mdgrappa.

pygrappa.mdgrappa

Python implementation of multidimensional GRAPPA.

pygrappa.mdgrappa.mdgrappa(kspace, calib=None, kernel_size=None, coil_axis=-1, lamda=0.01,
nnz=None, weights=None, ret_weights=False)

GeneRalized Autocalibrating Partially Parallel Acquisitions.

Parameters

• kspace (N-D array) – Measured undersampled complex k-space data. N-1 dimensions
hold spatial frequency axes (kx, ky, kz, etc.). 1 dimension holds coil images (coil_axis).
The missing entries should have exactly 0.

• calib (N-D array or None, optional) – Fully sampled calibration data. If
None, calibration data will be extracted from the largest possible hypercube with origin
at the center of k-space.

• kernel_size (tuple or None, optional) – The size of the N-1 dimensional
GRAPPA kernels: (kx, ky, . . .). Default: (5,)*(kspace.ndim-1)

• coil_axis (int, optional) – Dimension holding coil images.

• lamda (float, optional) – Tikhonov regularization constant for kernel calibration.

• nnz (int or None, optional) – Number of nonzero elements in a multidimensional
patch required to train/apply a kernel. Default: sqrt(prod(kernel_size)).

• weights (dict, optional) – Maps sampling patterns to trained kernels.

1 Griswold, Mark A., et al. “Generalized autocalibrating partially parallel acquisitions (GRAPPA).” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 47.6 (2002): 1202-1210.

4 Chapter 1. About

pygrappa

• ret_weights (bool, optional) – Return the trained weights as a dictionary map-
ping sampling patterns to kernels. Default is False.

Returns

• res (array_like) – k-space data where missing entries have been filled in.

• weights (dict, optional) – Returned if ret_weights=True.

Notes

Based on the GRAPPA algorithm described in1.

All axes (except coil axis) are used for GRAPPA reconstruction.

References

pygrappa.igrappa

Python implementation of the iGRAPPA algorithm.

pygrappa.igrappa.igrappa(kspace, calib, kernel_size=(5, 5), k=0.3, coil_axis=-1, lamda=0.01,
ref=None, niter=10, silent=True, backend=<function mdgrappa>)

Iterative GRAPPA.

Parameters

• kspace (array_like) – 2D multi-coil k-space data to reconstruct from. Make sure that
the missing entries have exact zeros in them.

• calib (array_like) – Calibration data (fully sampled k-space).

• kernel_size (tuple, optional) – Size of the 2D GRAPPA kernel (kx, ky).

• k (float, optional) – Regularization parameter for iterative reconstruction. Must be
in the interval (0, 1).

• coil_axis (int, optional) – Dimension holding coil data. The other two dimen-
sions should be image size: (sx, sy).

• lamda (float, optional) – Tikhonov regularization for the kernel calibration.

• ref (array_like or None, optional) – Reference k-space data. This is the true
data that we are attempting to reconstruct. If provided, MSE at each iteration will be re-
turned. If None, only reconstructed kspace is returned.

• niter (int, optional) – Number of iterations.

• silent (bool, optional) – Suppress messages to user.

• backend (callable) – GRAPPA function to use during each iteration. Default is
pygrappa.mdgrappa.

Returns

• res (array_like) – k-space data where missing entries have been filled in.

• mse (array_like, optional) – MSE at each iteration. Returned if ref not None.

Raises AssertionError – If regularization parameter k is not in the interval (0, 1).

1 Griswold, Mark A., et al. “Generalized autocalibrating partially parallel acquisitions (GRAPPA).” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 47.6 (2002): 1202-1210.

1.2. API Reference 5

pygrappa

Notes

More or less implements the iterative algorithm described in [1].

References

pygrappa.hpgrappa

Python implementation of hp-GRAPPA.

pygrappa.hpgrappa.hpgrappa(kspace, calib, fov, kernel_size=(5, 5), w=None, c=None,
ret_filter=False, coil_axis=-1, lamda=0.01, silent=True)

High-pass GRAPPA.

Parameters

• fov (tuple, (FOV_x, FOV_y)) – Field of view (in m).

• w (float, optional) – Filter parameter: determines the smoothness of the filter bound-
ary.

• c (float, optional) – Filter parameter: sets the cutoff frequency.

• ret_filter (bool, optional) – Returns the high pass filter determined by (w, c).

Notes

If w and/or c are None, then the closest values listed in Table 1 from1 will be used.

F2 described by Equation [2] in1 is used to generate the high pass filter.

References

pygrappa.seggrappa

Python implementation of the Segmented GRAPPA algorithm.

pygrappa.seggrappa.seggrappa(kspace, calibs, *args, **kwargs)
Segmented GRAPPA.

See pygrappa.grappa() for full list of arguments.

Parameters calibs (list of array_like) – List of calibration regions.

Notes

A generalized implementation of the method described in1. Multiple ACS regions can be supplied to function.
GRAPPA is run for each ACS region and then averaged to produce the final reconstruction.

1 Huang, Feng, et al. “High-pass GRAPPA: An image support reduction technique for improved partially parallel imaging.” Magnetic Resonance
in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 59.3 (2008): 642-649.

1 Park, Jaeseok, et al. “Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density
sampling.” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 53.1 (2005):
186-193.

6 Chapter 1. About

pygrappa

References

pygrappa.tgrappa

TGRAPPA implementation.

pygrappa.tgrappa.tgrappa(kspace, calib_size=(20, 20), kernel_size=(5, 5), coil_axis=-2,
time_axis=-1)

Temporal GRAPPA.

Parameters

• kspace (array_like) – 2+1D multi-coil k-space data to reconstruct from (total of 4
dimensions). Missing entries should have exact zeros in them.

• calib_size (array_like, optional) – Size of calibration region at the center of
kspace.

• kernel_size (tuple, optional) – Desired shape of the in-plane calibration re-
gions: (kx, ky).

• coil_axis (int, optional) – Dimension holding coil data.

• time_axis (int, optional) – Dimension holding time data.

Returns res – Reconstructed k-space data.

Return type array_like

Raises ValueError – When no complete ACS region can be found.

Notes

Implementation of the method proposed in1.

The idea is to form ACS regions using data from adjacent time frames. For example, in the case of 1D under-
sampling using undersampling factor R, at least R time frames must be merged to form a completely sampled
ACS. Then we can simply supply the undersampled data and the synthesized ACS to GRAPPA. Thus the heavy
lifting of this function will be in determining the ACS calibration region at each time frame.

References

pygrappa.slicegrappa

Python implementation of the Slice-GRAPPA algorithm.

pygrappa.slicegrappa.slicegrappa(kspace, calib, kernel_size=(5, 5), prior=’sim’, coil_axis=-2,
time_axis=-1, slice_axis=-1, lamda=0.01, split=False)

(Split)-Slice-GRAPPA for SMS reconstruction.

Parameters

• kspace (array_like) – Time frames of sum of k-space coil measurements for multiple
slices.

• calib (array_like) – Single slice measurements for each slice present in kspace.
Should be the same dimensions.

• kernel_size (tuple, optional) – Size of the GRAPPA kernel: (kx, ky).

1 Breuer, Felix A., et al. “Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA).” Magnetic Resonance in Medicine:
An Official Journal of the International Society for Magnetic Resonance in Medicine 53.4 (2005): 981-985.

1.2. API Reference 7

pygrappa

• prior ({ 'sim', 'kspace' }, optional) – How to construct GRAPPA sources.
GRAPPA weights are found by solving the least squares problem T = S W, where T are the
targets (calib), S are the sources, and W are the weights. The possible options are:

– ’sim’: simulate SMS acquisition from calibration data, i.e., sources S = sum(calib,
axis=slice_axis). This presupposes that the spatial locations of the slices in the calibration
data are the same as in the overlapped kspace data. This is similar to how the k-t BLAST
Wiener filter is constructed (see equation 1 in2).

– ’kspace’: uses the first time frame of the overlapped data as sources, i.e., S = kspace[1st
time frame].

This option is not used for Split-Slice-GRAPPA.

• coil_axis (int, optional) – Dimension that holds the coil data.

• time_axis (int, optional) – Dimension of kspace that holds the time data.

• slice_axis (int, optional) – Dimension of calib that holds the slice information.

• lamda (float, optional) – Tikhonov regularization for the kernel calibration.

• split (bool, optional) – Uses Split-Slice-GRAPPA kernel training method.

Returns res – Reconstructed slices for each time frame. res will always return the data in fixed order
or shape: (nx, ny, num_coils, num_time_frames, num_slices).

Return type array_like

Raises NotImplementedError – When “prior” is an invalid option.

Notes

This function implements both the Slice-GRAPPA algorithm as described in1 and the Split-Slice-GRAPPA
algorithm as first described in3.

References

pygrappa.splitslicegrappa

Python implementation of Split-Slice-GRAPPA.

pygrappa.splitslicegrappa.splitslicegrappa(*args, **kwargs)
Split-Slice-GRAPPA.

Notes

This is an alias for pygrappa.slicegrappa(split=True). See pygrappa.slicegrappa() for more information.

2 Sigfridsson, Andreas, et al. “Improving temporal fidelity in k-t BLAST MRI reconstruction.” International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2007.

1 Setsompop, Kawin, et al. “Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced
g-factor penalty.” Magnetic resonance in medicine 67.5 (2012): 1210-1224.

3 Cauley, Stephen F., et al. “Interslice leakage artifact reduction technique for simultaneous multislice acquisitions.” Magnetic resonance in
medicine 72.1 (2014): 93-102.

8 Chapter 1. About

pygrappa

pygrappa.grappaop

Python implementation of the GRAPPA operator formalism.

pygrappa.grappaop.grappaop(calib, coil_axis=-1, lamda=0.01)
GRAPPA operator for Cartesian calibration datasets.

Parameters

• calib (array_like) – Calibration region data. Usually a small portion from the center
of kspace.

• coil_axis (int, optional) – Dimension holding coil data.

• lamda (float, optional) – Tikhonov regularization parameter. Set to 0 for no regu-
larization.

Returns Gx, Gy – GRAPPA operators for both the x and y directions.

Return type array_like

Notes

Produces the unit operator described in1.

This seems to only work well when coil sensitivities are very well separated/distinct. If coil sensitivities are
similar, operators perform poorly.

References

pygrappa.radialgrappaop

Python implementation of Radial GRAPPA operator.

pygrappa.radialgrappaop.radialgrappaop(kx, ky, k, nspokes=None, spoke_axis=-2,
coil_axis=-1, spoke_axis_coord=-1, lamda=0.01,
ret_lGtheta=False, traj_warn=True)

Non-Cartesian Radial GRAPPA operator.

Parameters

• ky (kx,) – k-space coordinates of kspace data, k. kx and ky are 2D arrays containing (sx,
nr) : (number of samples along ray, number of rays).

• k (array_like) – Complex kspace data corresponding to the measurements at locations
kx, ky. k has three dimensions: sx, nr, and coil.

• nspokes (int, optional) – Number of spokes. Used when (kx, ky) and k are given
with flattened sample and spoke axes, i.e., (sx*nr, nc).

• spoke_axis (int, optional) – Axis of k that contains the spoke data. Not for kx,
ky: see spoke_axis_coord to specify spoke axis for kx and ky.

• coil_axis (int, optional) – Axis of k that contains the coil data.

• spoke_axis_coord (int, optional) – Axis of kx and ky that hold the spoke data.

• lamda (float, optional) – Tikhonov regularization term used both for fitting Gtheta
and log(Gx), log(Gy).

1 Griswold, Mark A., et al. “Parallel magnetic resonance imaging using the GRAPPA operator formalism.” Magnetic resonance in medicine
54.6 (2005): 1553-1556.

1.2. API Reference 9

pygrappa

• ret_lGtheta (bool, optional) – Return log(Gtheta) instead of Gx, Gy.

• traj_warn (bool, optional) – Warn about potential inconsistencies in trajectory,
e.g., not shaped correctly.

Returns Gx, Gy – GRAPPA operators along the x and y axes.

Return type array_like

Raises AssertionError – If kx and ky do not have spokes along spoke_axis_coord or if the
standard deviation of distance between spoke points is greater than or equal to 1e-10.

Notes

Implements the radial training scheme for self calibrating GRAPPA operators in1. Too many coils could lead to
instability of matrix exponents and logarithms – use PCA or other suitable coil combination technique to reduce
dimensionality if needed.

References

pygrappa.ttgrappa

Python implementation of through-time GRAPPA.

pygrappa.ttgrappa.ttgrappa(kx, ky, kspace, cx, cy, calib, kernel_size=25, kernel_radius=None,
max_kernel_size=25, coil_axis=-1, time_axis=-2, lamda=0.01)

Through-time GRAPPA.

Parameters

• ky (kx,) – k-space coordinates of kspace data, kspace. kx and ky are 1D arrays.

• kspace (array_like) – Complex kspace data corresponding to the measurements at
locations kx, ky. kspace has two dimensions: data and coil. Unsampled points should be
exactly 0.

• cy (cx,) – k-space coordinates of calibration kspace data. cx and cy are 1D arrays.

• calib (array_like) – Complex kspace data corresponding to the measurements at lo-
cations cx, cy. calib has three dimensions: data, time, and coil.

• kernel_size (int, optional) – Number of points to use as sources for kernel train-
ing. This many nearest neighbors to the targets will be chosen.

• kernel_radius (float, optional) – If not None, this radius will be used instead
of kernel_size. All sources within this radius of the target will be chosen. Has units same as
kx, ky.

• max_kernel_size (int, optional) – Maximum number of points in ball when
using kernel_radius. If more sources are found, then randomly choose max_kernel_size of
them.

• coil_axis (int, optional) – Dimension of kspace and calib holding coil data.

• time_axis (int, optional) – Dimension of calib holding time data.

• lamda (float, optional) – Tikhonov regularization for the kernel calibration.

Returns res – The reconstructed measurements with the same size as kspace.

1 Seiberlich, Nicole, et al. “Self-calibrating GRAPPA operator gridding for radial and spiral trajectories.” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 59.4 (2008): 930-935.

10 Chapter 1. About

pygrappa

Return type array_like

Notes

Implements the through-time GRAPPA algorithm for non-Cartesian reconstruction as described in1.

This implementation uses a kd-tree for kernel selection similar to2. This simplifies searches for kernel geome-
tries and helps make this implementation trajectory agnostic.

References

pygrappa.pars

Python implementation of the PARS algorithm.

pygrappa.pars.pars(kx, ky, k, sens, tx=None, ty=None, kernel_size=25, kernel_radius=None,
coil_axis=-1)

Parallel MRI with adaptive radius in k-space.

Parameters

• ky (kx,) – Sample points in kspace corresponding to measurements k. kx, kx are 1D
arrays.

• k (array_like) – Complex kspace coil measurements corresponding to points (kx, ky).

• sens (array_like) – Coil sensitivity maps with shape of desired reconstruction.

• ty (tx,) – Sample points in kspace defining the grid of ifft2(sens). If None, then tx, ty will
be generated from a meshgrid with endpoints [min(kx), max(kx), min(ky), max(ky)].

• kernel_size (int, optional) – Number of nearest neighbors to use when interpo-
lating kspace.

• kernel_radius (float, optional) – Raidus in kspace (units same as (kx, ky)) to
select neighbors when training kernels.

• coil_axis (int, optional) – Dimension holding coil data.

Returns res – Reconstructed image space on a Cartesian grid with the same shape as sens.

Return type array_like

Notes

Implements the algorithm described in1.

Using kernel_radius seems to perform better than kernel_size.

1 Seiberlich, Nicole, et al. “Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging.” Magnetic resonance in medicine
65.2 (2011): 492-505.

2 Luo, Tianrui, et al. “A GRAPPA algorithm for arbitrary 2D/3D non-Cartesian sampling trajectories with rapid calibration.” Magnetic resonance
in medicine 82.3 (2019): 1101-1112.

1 Yeh, Ernest N., et al. “3Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): Constrained image reconstruction
using k-space locality in radiofrequency coil encoded data.” Magnetic Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine 53.6 (2005): 1383-1392.

1.2. API Reference 11

pygrappa

References

pygrappa.grog

Python implmentation of the GROG algorithm.

pygrappa.grog.grog(kx, ky, k, N, M, Gx, Gy, precision=2, radius=0.75, Dx=None, Dy=None,
coil_axis=-1, ret_image=False, ret_dicts=False, use_primefac=False, re-
move_os=True, inverse=False)

GRAPPA operator gridding.

Parameters

• ky (kx,) – k-space coordinates (kx, ky) of measured data k. kx, ky should each be a 1D
array. Must both be either float or double.

• k (array_like) – Measured k-space data at points (kx, ky).

• M (N,) – Desired resolution of Cartesian grid.

• Gy (Gx,) – Unit GRAPPA operators.

• precision (int, optional) – Number of decimal places to round fractional matrix
powers to.

• radius (float, optional) – Radius of ball in k-space to from Cartesian targets from
which to select source points.

• Dy (Dx,) – Dictionaries of precomputed fractional matrix powers.

• coil_axis (int, optional) – Axis holding coil data.

• ret_image (bool, optional) – Return image space result instead of k-space.

• ret_dicts (bool, optional) – Return dictionaries of fractional matrix powers.

• use_primefac (bool, optional) – Use prime factorization to speed-up fractional
matrix power precomputations.

• remove_os (bool, optional) – Remove oversampling factor.

• inverse (bool, optional) – Do the inverse gridding operation, i.e., Cartesian points
to (kx, ky).

Returns

• res (array_like) – Cartesian gridded k-space (or image).

• Dx, Dy (dict, optional) – Fractional matrix power dictionary for both Gx and Gy.

Raises

• AssertionError – When (kx, ky) have different types.

• AssertionError – When (kx, ky) and k do not have matching types, i.e., if (kx, ky) are
float32, k must be complex64.

Notes

Implements the GROG algorithm as described in1.

1 Seiberlich, Nicole, et al. “Self-calibrating GRAPPA operator gridding for radial and spiral trajectories.” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 59.4 (2008): 930-935.

12 Chapter 1. About

pygrappa

References

pygrappa.nlgrappa_matlab

Python port of MATLAB script.

pygrappa.nlgrappa_matlab.nlgrappa_matlab(reduced_fourier_data, ORF, pe_loc, acs_data,
acs_line_loc, num_block, num_column,
times_comp)

Python port of original NL-GRAPPA script.

Parameters

• reduced_fourier_data (array_like) – undersampled k-space data

• ORF (int) – outer reduction factor

• pe_loc (array_like) – undersampled phase-encoding lines’ location

• acs_data (array_like) – auto-calibration signal data (middle region of k-space)

• acs_line_loc (array_like) – auto-calibration signal lines’ location

• num_block (int) – number of blocks

• num_column (int) – number of columns

• times_comp (int) – times of the number of the first-order terms (the number of the
second-order terms = time_comp X the number of the first-order terms)

Returns

• full_fourier_data (array_like) – reconstructed k-space (with ACS replacement)

• rec_img (array_like) – reconstructed image

• coef0 (array_like) – coefficients for reconstruction

Notes

time_comp parameter As the parameter time_comp increases, relevant second-order terms are added for recon-
struction. When time_comp = 1

MATLAB script: Written by: Yuchou Chang, University of Wisconsin - Milwaukee Email: yuchou@uwm.edu;
leiying@uwm.edu Created on Oct. 12, 2011

References

pygrappa.gfactor

Calculate g-factor maps.

pygrappa.gfactor.gfactor(coils, Rx, Ry, coil_axis=-1, tol=1e-06)
Compute g-factor map for coil sensitities and accelerations.

Parameters

• C (array_like) – Array of coil sensitivities

• Ry (int) – x acceleration

• Ry – y acceleration

1.2. API Reference 13

mailto:yuchou@uwm.edu
mailto:leiying@uwm.edu

pygrappa

• coil_axis (int, optional) – Dimension holding coil data.

• tol (float, optional) –

Returns g – g-factor map

Return type array_like

Notes

Adapted from John Pauly’s MATLAB script found at1.

References

pygrappa.gfactor.gfactor_single_coil_R2(coil, Rx=2, Ry=1)
Specific example of a single homogeneous coil, R=2.

Parameters

• coil (array_like) – Single coil sensitivity.

• Ry (int) – x acceleration

• Ry – y acceleration

Returns g – g-factor map

Return type array_like

Notes

Analytical solution for a single, homogeneous coil with an undersampling factor of R=2. Equation 11 in2.

Comparing head-to-head with pygrappa.gfactor(), this does produce different results. I don’t know which one is
more correct. . .

References

pygrappa.sense1d

Python implementation of SENSE.

pygrappa.sense1d.sense1d(im, sens, Rx=1, Ry=1, coil_axis=-1, imspace=True)
Sensitivity Encoding for Fast MRI (SENSE) along one dimension.

Parameters

• im (array_like) – Array of the aliased 2D multicoil coil image. If imspace=False, im is
the undersampled k-space data.

• sens (array_like) – Complex coil sensitivity maps with the same dimensions as im.

• Ry (Rx,) – Acceleration factor in x and y. One of Rx, Ry must be 1. If both are 1, then this
is Roemer’s optimal coil combination.

• coil_axis (int, optional) – Dimension holding coil data.

1 https://web.stanford.edu/class/ee369c/restricted/ Solutions/assignment_4_solns.pdf
2 Blaimer, Martin, et al. “Virtual coil concept for improved parallel MRI employing conjugate symmetric signals.” Magnetic Resonance in

Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 61.1 (2009): 93-102.

14 Chapter 1. About

https://web.stanford.edu/class/ee369c/restricted/

pygrappa

• imspace (bool, optional) – If im is image space or k-space data.

Returns res – Unwrapped single coil reconstruction.

Return type array_like

Notes

Implements the algorithm first described in1. This implementation is based on the MATLAB tutorial found in2.

This implementation handles only regular undersampling along a single dimension. Arbitrary undersampling is
not supported by this function.

Odd Rx, Ry seem to behave strangely, i.e. not as well as even factors. Right now I’m padding im and sens by 1
and removing at end.

References

pygrappa.cgsense

Python implementation of iterative and CG-SENSE.

pygrappa.cgsense.cgsense(kspace, sens, coil_axis=-1)
Conjugate Gradient SENSE for arbitrary Cartesian acquisitions.

Parameters

• kspace (array_like) – Undersampled kspace data with exactly 0 in place of missing
samples.

• sens (array_like) – Coil sensitivity maps.

• coil_axis (int, optional) – Dimension of kspace and sens holding the coil data.

Returns res – Single coil unaliased estimate (imspace).

Return type array_like

Notes

Implements a Cartesian version of the iterative algorithm described in1. It can handle arbitrary undersampling
of Cartesian acquisitions and arbitrarily-dimensional datasets. All dimensions except coil_axis will be used
for reconstruction.

This implementation uses the scipy.sparse.linalg.cg() conjugate gradient algorithm to solve A^H A x = A^H b.

References

The exact API of all functions and classes, as given by the docstrings. The API documents expected types and allowed
features for all functions, and all parameters available for the algorithms.

A full catalog can be found in the API Reference page.

1 Pruessmann, Klaas P., et al. “SENSE: sensitivity encoding for fast MRI.” Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine 42.5 (1999): 952-962.

2 https://users.fmrib.ox.ac.uk/~mchiew/docs/ SENSE_tutorial.html
1 Pruessmann, Klaas P., et al. “Advances in sensitivity encoding with arbitrary k-space trajectories.” Magnetic Resonance in Medicine: An

Official Journal of the International Society for Magnetic Resonance in Medicine 46.4 (2001): 638-651.

1.2. API Reference 15

https://users.fmrib.ox.ac.uk/~mchiew/docs/

pygrappa

16 Chapter 1. About

CHAPTER 2

Usage

2.1 Usage

Note: These should probably be moved into docstrings for each method.

pygrappa.grappa() implements GRAPPA (1) for arbitrarily sampled Cartesian datasets. It is called with undersampled
k-space data and calibration data (usually a fully sampled portion of the center of k-space). The unsampled points in
k-space should be exactly 0:

from pygrappa import grappa

These next two lines are to show you the sizes of kspace and
calib -- you need to bring your own data. It doesn't matter
where the coil dimension is, you just need to let 'grappa' know
when you call it by providing the 'coil_axis' argument
sx, sy, ncoils = kspace.shape[:]
cx, cy, ncoils = calib.shape[:]

Here's the actual reconstruction
res = grappa(kspace, calib, kernel_size=(5, 5), coil_axis=-1)

Here's the resulting shape of the reconstruction. The coil
axis will end up in the same place you provided it in
sx, sy, ncoils = res.shape[:]

If calibration data is in the k-space data, simply extract it (make sure to call the ndarray.copy() method, may break if
using reference to the original k-space data):

from pygrappa import grappa

(continues on next page)

1 Griswold, Mark A., et al. “Generalized autocalibrating partially parallel acquisitions (GRAPPA).” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 47.6 (2002): 1202-1210.

17

pygrappa

(continued from previous page)

sx, sy, ncoils = kspace.shape[:] # center 20 lines are ACS
ctr, pd = int(sy/2), 10
calib = kspace[:, ctr-pd:ctr+pad, :].copy() # call copy()!

coil_axis=-1 is default, so if coil dimension is last we don't
need to explicity provide it
res = grappa(kspace, calib, kernel_size=(5, 5))
sx, sy, ncoils = res.shape[:]

A very similar GRAPPA implementation with the same interface can be called like so:

from pygrappa import cgrappa
res = cgrappa(kspace, calib, kernel_size=(5, 5), coil_axis=-1)

This function uses much of the same code as the Python grappa() implementation, but has certain parts written in
C++ and all compiled using Cython. It runs about twice as fast. It will probably become the default GRAPPA
implementation in future releases.

vcgrappa() is a VC-GRAPPA (2) implementation that simply constructs conjugate virtual coils, appends them to the
coil dimension, and passes everything through to cgrappa(). The function signature is identical to pygrappa.grappa().

For reconstructions with more than 2 dimensions, there is a generalized multidimensional implementation called md-
grappa() that can be called as follows:

from pygrappa import mdgrappa
res = mdgrappa(kspace, calib, kernel_size=(5, 5, 5)) # e.g., 3D

igrappa() is an Iterative-GRAPPA (3) implementation that can be called as follows:

from pygrappa import igrappa
res = igrappa(kspace, calib, kernel_size=(5, 5))

You can also provide the reference kspace to get the MSE at
each iteration, showing you the performance. Regularization
parameter k (as described in paper) can also be provided:
res, mse = igrappa(kspace, calib, k=0.6, ref=ref_kspace)

igrappa() makes calls to cgrappa() on the back end.

hpgrappa() implements the High-Pass GRAPPA (hp-GRAPPA) algorithm (4). It requires FOV to construct an appro-
priate high pass filter. It can be called as:

from pygrappa import hpgrappa
res = hpgrappa(kspace, calib, fov=(FOV_x, FOV_y))

seggrappa() is a generalized Segmented GRAPPA implementation (5). It is supplied a list of calibration regions,
cgrappa is run for each, and all the reconstructions are averaged together to yield the final image. It can be called with
all the normal cgrappa arguments:

2 Blaimer, Martin, et al. “Virtual coil concept for improved parallel MRI employing conjugate symmetric signals.” Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 61.1 (2009): 93-102.

3 Zhao, Tiejun, and Xiaoping Hu. “Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction.” Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 59.4 (2008): 903-907.

4 Huang, Feng, et al. “High-pass GRAPPA: An image support reduction technique for improved partially parallel imaging.” Magnetic Resonance
in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 59.3 (2008): 642-649.

5 Park, Jaeseok, et al. “Artifact and noise suppression in GRAPPA imaging using improved k-space coil calibration and variable density
sampling.” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 53.1 (2005):
186-193.

18 Chapter 2. Usage

pygrappa

from pygrappa import seggrappa

cx1, cy1, ncoil = calib1.shape[:]
cx2, cy2, ncoil = calib2.shape[:]
res = seggrappa(kspace, [calib1, calib2])

TGRAPPA is a Temporal GRAPPA implementation (6) and does not require calibration data. It can be called as:

from pygrappa import tgrappa

sx, sy, ncoils, nt = kspace.shape[:]
res = tgrappa(

kspace, calib_size=(20, 20), kernel_size=(5, 5),
coil_axis=-2, time_axis=-1)

Calibration region size and kernel size must be provided. The calibration regions will be constructed in a greedy
manner: once enough time frames have been consumed to create an entire ACS, GRAPPA will be run. TGRAPPA
uses the cgrappa implementation for its speed.

slicegrappa() is a Slice-GRAPPA (7) implementation that can be called like:

from pygrappa import slicegrappa

sx, sy, ncoils, nt = kspace.shape[:]
sx, sy, ncoils, sl = calib.shape[:]
res = slicegrappa(kspace, calib, kernel_size=(5, 5), prior='sim')

kspace is assumed to SMS-like with multiple collapsed slices and multiple time frames that each need to be separated.
calib are the individual slices’ kspace data at the same size/resolution. prior tells the Slice-GRAPPA algorithm how
to construct the sources, that is, how to solve T = S W, where T are the targets (calibration data), S are the sources, and
W are GRAPPA weights. prior=’sim’ creates S by simulating the SMS acquisition, i.e., S = sum(calib, slice_axis).
prior=’kspace’ uses the first time frame from the kspace data, i.e., S = kspace[1st time frame]. The result is an array
containing all target slices for all time frames in kspace.

Similarly, Split-Slice-GRAPPA (8) can be called like so:

from pygrappa import splitslicegrappa as ssgrappa

sx, sy, ncoils, nt = kspace.shape[:]
sx, sy, ncoils, sl = calib.shape[:]
res = ssgrappa(kspace, calib, kernel_size=(5, 5))

Note that pygrappa.splitslicegrappa is an alias for
pygrappa.slicegrappa(split=True), so it can also be called
like this:
from pygrappa import slicegrappa
res = slicegrappa(kspace, calib, kernel_size=(5, 5), split=True)

grappaop returns two unit GRAPPA operators (9,10) found from a 2D Cartesian calibration dataset:
6 Breuer, Felix A., et al. “Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA).” Magnetic Resonance in Medicine:

An Official Journal of the International Society for Magnetic Resonance in Medicine 53.4 (2005): 981-985.
7 Setsompop, Kawin, et al. “Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced

g-factor penalty.” Magnetic resonance in medicine 67.5 (2012): 1210-1224.
8 Cauley, Stephen F., et al. “Interslice leakage artifact reduction technique for simultaneous multislice acquisitions.” Magnetic resonance in

medicine 72.1 (2014): 93-102.
9 Griswold, Mark A., et al. “Parallel magnetic resonance imaging using the GRAPPA operator formalism.” Magnetic resonance in medicine

54.6 (2005): 1553-1556.
10 Blaimer, Martin, et al. “2D-GRAPPA-operator for faster 3D parallel MRI.” Magnetic Resonance in Medicine: An Official Journal of the

International Society for Magnetic Resonance in Medicine 56.6 (2006): 1359-1364.

2.1. Usage 19

pygrappa

from pygrappa import grappaop

sx, sy, ncoils = calib.shape[:]
Gx, Gy = grappaop(calib, coil_axis=-1)

See the examples to see how to use the GRAPPA operators to reconstruct datasets.

Similarly, radialgrappaop() returns two unit GRAPPA operators13 found from a radial calibration dataset:

from pygrappa import radialgrappaop
sx, nr = kx.shape[:] # sx: number of samples along each spoke
sx, nr = ky.shape[:] # nr: number of rays/spokes
sx, nr, nc = k.shape[:] # nc is number of coils

Gx, Gy = radialgrappaop(kx, ky, k)

For large number of coils, warnings will appear about matrix logarithms and exponents, but I think it should be fine.

ttgrappa implements the through-time GRAPPA algorithm (11). It accepts arbitrary k-space sampling locations and
measurements along with corresponding fully sampled calibration data. The kernel is specified by the number of
points desired, not a tuple as is usually the case:

from pygrappa import ttgrappa

kx, ky are both 1D arrays describing the points (kx, ky)
sampled in kspace. kspace is a matrix with two dimensions:
(meas., coil) corresponding to the measurements takes at each
(kx, ky) from each coil. (cx, cy) and calib are similarly
supplied. kernel_size is the number of nearest neighbors used
for the least squares fit. 25 corresponds to a kernel size of
(5, 5) for Cartesian GRAPPA:

res = ttgrappa(kx, ky, kspace, cx, cy, calib, kernel_size=25)

PARS12 is an older parallel imaging algorithm, but it checks out. It can be called like so:

from pygrappa import pars

Notice we provide the image domain coil sensitivity maps: sens
res = pars(kx, ky, kspace, sens, kernel_radius=.8, coil_axis=-1)

You can use kernel_size instead of kernel_radius, but it seems
that kernel_radius gives better reconstructions.

In general, PARS is slower in this Python implementation because the size of the kernels change from target point to
target point, so we have to loop over every single one. Notice that pars returns the image domain reconstruction on
the Cartesian grid, not interpolated k-space as most methods in this package do.

GROG14 is called with trajectory information and unit GRAPPA operators Gx and Gy:
13 Seiberlich, Nicole, et al. “Self-calibrating GRAPPA operator gridding for radial and spiral trajectories.” Magnetic Resonance in Medicine: An

Official Journal of the International Society for Magnetic Resonance in Medicine 59.4 (2008): 930-935.
11 Seiberlich, Nicole, et al. “Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging.” Magnetic resonance in medicine

65.2 (2011): 492-505.
12 Yeh, Ernest N., et al. “3Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): Constrained image reconstruction

using k-space locality in radiofrequency coil encoded data.” Magnetic Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine 53.6 (2005): 1383-1392.

14 Seiberlich, Nicole, et al. “Self-calibrating GRAPPA operator gridding for radial and spiral trajectories.” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 59.4 (2008): 930-935.

20 Chapter 2. Usage

pygrappa

from pygrappa import grog

(N, M) is the resolution of the desired Cartesian grid
res = grog(kx, ky, k, N, M, Gx, Gy)

Precomputations of fractional matrix powers can be accelerated
using a prime factorization technique submitted to ISMRM 2020:
res = grog(kx, ky, k, N, M, Gx, Gy, use_primefac=True)

See examples.basic_radialgrappaop.py for usage example.

Esoterically, forward and inverse gridding are supported out of the box with this implementation of GROG, i.e., non-
Cartesian -> Cartesian can be reversed. It’s not perfect and I’ve never heard of anyone doing this via GROG, but check
out examples.inverse_grog for more info.

NL-GRAPPA uses machine learning feature augmentation to reduce model- based reconstruction error15. It’s imple-
mentation is based on the original script, so its function signature looks different than normal. Please see example for
better understanding of arguments. It can be called like so:

from pygrappa import nlgrappa_matlab
res = nlgrappa_matlab(

kspace_u, R, pe_loc, calib, acs_line_loc, num_block,
num_column, times_comp)

You might need to play around with the arguments to get good images. The implementation is pretty much a straight
mapping of the original MATLAB script to Python, so performance is not going to be very good compared to the other
GRAPPA implementations in this package.

There was Python implementation in previous versions of pygrappa, but it never worked correctly and raises an ex-
ception now if you try to call it.

g-factor maps show geometry factor and a general sense of how well parallel imaging techniques like GRAPPA will
work. Coil sensitivities must be known for to use this function as well as integer acceleration factors in x and y:

from pygrappa import gfactor
g = gfactor(sens, Rx, Ry)

SENSE implements the algorithm described in16 for unwrapping aliased images along a single axis. Coil sensitivity
maps must be provided. Coil images may be provided in image domain or k-space with the approprite flag:

from pygrappa import sense1d
res = sense1d(im, sens, Rx=2, coil_axis=-1)

Or, kspace data for coil images may be provided:
res = sense1d(kspace, sens, Rx=2, coil_axis=-1, imspace=False)

CG-SENSE implements a Cartesian version of the algorithm described in17. It works for arbitrary undersampling of
Cartesian datasets. Undersampled k-space and coil sensitivity maps are provided:

from pygrappa import cgsense
res = cgsense(kspace, sens, coil_axis=-1)

15 Chang, Yuchou, Dong Liang, and Leslie Ying. “Nonlinear GRAPPA: A kernel approach to parallel MRI reconstruction.” Magnetic resonance
in medicine 68.3 (2012): 730-740.

16 Pruessmann, Klaas P., et al. “SENSE: sensitivity encoding for fast MRI.” Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine 42.5 (1999): 952-962.

17 Pruessmann, Klaas P., et al. “Advances in sensitivity encoding with arbitrary k-space trajectories.” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in Medicine 46.4 (2001): 638-651.

2.1. Usage 21

pygrappa

Although SENSE is more commonly known as an image domain parallel imaging reconstruction technique, it is useful
to include in this package for comparison to kernel based and hybrid reconstructions.

2.2 References

See the Usage page. Also see the examples module. It has several scripts showing basic usage. Docstrings are also a
great resource – check them out for all possible arguments and usage info.

You can run examples from the command line by calling them like this:

python -m pygrappa.examples.[example-name]

For example, if I wanted to try out TGRAPPA:
python -m pygrappa.examples.basic_tgrappa

22 Chapter 2. Usage

Python Module Index

p
pygrappa.cgrappa, 4
pygrappa.cgsense, 15
pygrappa.gfactor, 13
pygrappa.grappa, 3
pygrappa.grappaop, 9
pygrappa.grog, 12
pygrappa.hpgrappa, 6
pygrappa.igrappa, 5
pygrappa.mdgrappa, 4
pygrappa.nlgrappa_matlab, 13
pygrappa.pars, 11
pygrappa.radialgrappaop, 9
pygrappa.seggrappa, 6
pygrappa.sense1d, 14
pygrappa.slicegrappa, 7
pygrappa.splitslicegrappa, 8
pygrappa.tgrappa, 7
pygrappa.ttgrappa, 10

23

pygrappa

24 Python Module Index

Index

C
cgsense() (in module pygrappa.cgsense), 15

G
gfactor() (in module pygrappa.gfactor), 13
gfactor_single_coil_R2() (in module py-

grappa.gfactor), 14
grappa() (in module pygrappa.grappa), 3
grappaop() (in module pygrappa.grappaop), 9
grog() (in module pygrappa.grog), 12

H
hpgrappa() (in module pygrappa.hpgrappa), 6

I
igrappa() (in module pygrappa.igrappa), 5

M
mdgrappa() (in module pygrappa.mdgrappa), 4

N
nlgrappa_matlab() (in module py-

grappa.nlgrappa_matlab), 13

P
pars() (in module pygrappa.pars), 11
pygrappa.cgrappa (module), 4
pygrappa.cgsense (module), 15
pygrappa.gfactor (module), 13
pygrappa.grappa (module), 3
pygrappa.grappaop (module), 9
pygrappa.grog (module), 12
pygrappa.hpgrappa (module), 6
pygrappa.igrappa (module), 5
pygrappa.mdgrappa (module), 4
pygrappa.nlgrappa_matlab (module), 13
pygrappa.pars (module), 11
pygrappa.radialgrappaop (module), 9
pygrappa.seggrappa (module), 6

pygrappa.sense1d (module), 14
pygrappa.slicegrappa (module), 7
pygrappa.splitslicegrappa (module), 8
pygrappa.tgrappa (module), 7
pygrappa.ttgrappa (module), 10

R
radialgrappaop() (in module py-

grappa.radialgrappaop), 9

S
seggrappa() (in module pygrappa.seggrappa), 6
sense1d() (in module pygrappa.sense1d), 14
slicegrappa() (in module pygrappa.slicegrappa), 7
splitslicegrappa() (in module py-

grappa.splitslicegrappa), 8

T
tgrappa() (in module pygrappa.tgrappa), 7
ttgrappa() (in module pygrappa.ttgrappa), 10

25

	About
	Usage
	Python Module Index
	Index

